算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。
一个算法应该具有以下五个重要的特征:
算法的有穷性是指算法必须能在执行有限个步骤之后终止;
算法的每一步骤必须有确切的定义;
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
二、算法的控制结构:一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。
T(n)=Ο(f(n))
因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
算法的正确性是评价一个算法优劣的最重要的标准。
算法的可读性是指一个算法可供人们阅读的容易程度。 [1]
健壮性是指一个算法对不合理数据输入的反应能力和处理能力,也称为容错性。
排序算法 | 平均时间复杂度 | 最好情况 | 最坏情况 | 空间复杂度 | 排序方式 | 稳定性 |
---|---|---|---|---|---|---|
冒泡排序 | O(n2) | O(n) | O(n2) | O(1) | In-place | 稳定 |
选择排序 | O(n2) | O(n2) | O(n2) | O(1) | In-place | 不稳定 |
插入排序 | O(n2) | O(n) | O(n2) | O(1) | In-place | 稳定 |
希尔排序 | O(n log n) | O(n log2 n) | O(n log2 n) | O(1) | In-place | 不稳定 |
归并排序 | O(n log n) | O(n log n) | O(n log n) | O(n) | In-place | 稳定 |
快速排序 | O((n log n) | O(n log n) | O(n2) | O(log n) | In-place | 不稳定 |
堆排序 | O((n log n) | O(n log n) | O(n log n) | O(1) | In-place | 不稳定 |
计数排序 | O(n + k) | O(n) | O(n2) | O(k) | In-place | 稳定 |
桶排序 | O(n + k) | O(n) | O(n2) | O(n + k) | In-place | 稳定 |
基数排序 | O(n * k) | O(n * k) | O(n * k) | O(n + k) | In-place | 稳定 |